《明史》·卷三十三 志第九
曆三
大統曆法一下法原
太陽盈縮平立定三差之原
冬至前後盈初縮末限,八十八日九十一刻,[就整。]離為六段,每段各得一十四日八十二刻。[就整。]各段實測日躔度數,與平行相較,以為積差。
積日 積差
第一段 一十四日八二 七千○五十八分○二五
第二段 二十九日六四 一萬二千九百七十六三九二
第三段 四十四日四六 一萬七千六百九十三七四六二
第四段 五十九日二八 二萬一千一百四十八七三二八
第五段 七十四日一○ 二萬三千二百七十九九九七
第六段 八十八日九二 二萬四千○二十六一八四
各置其段積差,以其段積日除之,為各段日平差。 置各段日平差,與後段日平差相減,為一差。 置一差,與後段一差相減,為二差。
日平差 一差 二差
第一段 四百七十六分二五 三十八分四五 一分三八
第二段 四百三十七分八○ 三十九分八三 一分三八
第三段 三百九十七分九七 四十一分二一 一分三八
第四段 三百五十六分七六 四十二分五九 一分三八
第五段 三百一十四分一七 四十三分九七
第六段 二百七十○分二○
置第一段日平差,四百七十六分二十五秒,為汎平積。 以第二段二差一分三十八秒,去減第一段一差三十八分四十五秒,餘三十七分○七秒,為汎平積差。 另置第一段二差一分三十八秒,折半得六十九秒,為汎立積差。 以汎平積差三十七分○七秒,加入汎平積四百七十六分二十五秒,共得五百一十三分三十二秒,為定差。 以汎立積差六十九秒,去減汎平積差三十七分○七秒,餘三十六分三十八秒為實,以段日一十四日八十二刻為法除之,得二分四十六秒為平差。 置汎立積差六十九秒為實,以段日為法除二次,得三十一微,為立差。
夏至前後縮初盈末限,九十三日七十一刻,[就整。]離為六段,每段各得一十五日六十二刻。[就整。]各段實測日躔度數,與平行相較,以為積差。
積日 積差
第一段 一十五日六二 七千○五十八分九九○四
第二段 三十一日二四 一萬二千九百七十八六五八
第三段 四十六日八六 一萬七千六百九十六六七九
第四段 六十二日四八 二萬一千一百五十○七二九六
第五段 七十八日一○ 二萬三千二百七十八四八六
第六段 九十三日七二 二萬四千○百一十七六二四四
推日平差、一差、二差術,與盈初縮末同。
日平差 一差 二差
第一段 四百五十一分九二 三十六分四七 一分三三
第二段 四百一十五分四五 三十七分八○ 一分三三
第三段 三百七十七分六五 三十九分一二 一分三三
第四段 三百三十八分五二 四十○分四六 一分三三
第五段 二百九十八分○六 四十一分七九
第六段 二百五十六分二七
置第一段日平差,四百五十一分九十二秒,為汎平積。 以第一段二差一分三十三秒,去減第一段一差三十六分四十七秒,餘三十五分一十四秒,為汎平積差。 另置第一段二差一分三十三秒折半,得六十六秒五十微,為汎立積差。 以汎平積差三十五分一十四秒,加入汎平積四百五十一分九十二秒,共四百八十七分○六秒,為定差。 以汎立積差六十六秒五十微,去減汎平差三十五分一十四秒,餘三十四分四十七秒五十微為實,以段日一十五日六二為法除之,得二分二十一秒,為平差。 置汎立積差六十六秒五十微為實,以段日為法,除二次,得二十七微,為立差。
凡求盈縮,以入曆初末日乘立差,得數以加平差,再以初末日乘之,得數以減定差,餘數以初末日乘之,為盈縮積。
凡盈曆以八十八日九○九二二五為限,縮曆以九十三日七一二○二五為限。在其限已下為初,以上轉減半歲周餘為末。盈初是從冬至後順推,縮末是從冬至前逆溯,其距冬至同,故其盈積同。縮初是從夏至後順推,盈末是從夏至前逆溯,其距夏至同,故其縮積同。
盈縮招差圖[圖闕]
盈縮招差圖說
盈縮招差,本為一象限之法。[如盈曆則以八十八日九十一刻為象限,縮曆則以九十三日七十一刻為象限。]今止作九限者,舉此為例也。其空格九行定差本數,為實也。其斜線以上平差立差之數,為法也。斜線以下空格之定差,乃餘實也。假如定差為一萬,平差為一百,立差為單一。今求九限法,以九限乘定差得九萬為實。另置平差,以九限乘二次,得八千一百。置立差,以九限乘三次,得七百二十九。幷兩數得八千八百二十九為法。以法減實,餘八萬一千一百七十一,為九限積。又法,以九限乘平差得九百,又以九限乘立差二次得八十一,幷兩數得九百八十一為法,定差一萬為實,以法減實,餘九千零一十九,即九限末位所書之定差也。於是再以九限乘餘實,得八萬一千一百七十一,為九限積,與前所得同。蓋前法是先乘後減,又法是先減後乘,其理一也。
按授時曆於七政盈縮,並以垛積招差立算,其法巧合天行,與西人用小輪推步之法,殊途同歸。然世所傳九章諸書,不載其術,曆草載其術,而不言