《历算全书》·5
计开
甲原金四百 加赢乙四百【二之一也】共八百 除丙又赢去甲一百【四之一也】仍余七百
乙原金八百 加赢丙三百【三之一也】共一千一百 甲赢去四百【乙二之一也】仍余七百
丙原金九百 赢甲一百【四之一也】共一千 乙赢去三百【丙三之一也】亦仍余七百
论曰此与刋误条骡马逓借一匹同但马一骡二驴三即是原物偕所借之一而为和数今乙一丙二甲三却是各所存之余分偕所赢之一分而为和数也得数大异者马骡即是全数今则用分故丙之全数转多于乙若以一分计则乙之分自多于丙如马力之于骡矣
又论曰此三条皆是两相交易而又是和数与前数条金银交易几锭不同
难题歌曰一条竿子一条索索比竿子长一托双折索子去量竿却比竿子短一托
解曰一托者五尺也
法以零整襍列位 因双折是二之一故以二通索
法一即以实一丈命为绳之一分 分母二因之得绳长二丈 减负五尺余得竿长一丈五尺
假如有绳长不知数但云比竿长六尺若三折其绳则短于竿八尺
法二除实三丈得竿长一丈五尺 加正六尺得绳长二丈一尺
论曰原法别有求法然不如方程穏捷故作此问以明之若用难题法不能通矣故方程能御杂法而杂法不能御方程 此条统宗原入均输今改正
问井不知深先将绳折作三条入井汲永绳长四尺复将绳折作四条入井亦长一尺其井深绳长各若干
法以两母【三四】相乗得十二分为绳母数 以母【三四】互乗其子【之一之一】得【四三】是为以绳十二分之四汲水而长四尺以绳十二分之三汲水而长一尺也
余一分为法 即以实三尺命为绳十二分之一以十二分乗一分得三十六尺为绳长 以绳之三分计九尺同减负一尺得八尺为井深
计开
井深八尺
绳长三十六尺
三折之得一十二尺 比井多四尺
四折之得九尺 比井多一尺
论曰此条原属盈朒今以方程御之尤简易故曰方程能御杂法也
试更之则先得井深
法一省除即以八尺命为井深 加正四尺共十二尺绳之四分除之得三尺为一分 一十二分母乗之得绳长三十六尺
论曰此余八尺者即物实也前以余三尺为绳长实者即人实即此可悟盈朒章作法之原要之是二色方程法耳【人实物实不同而除法则同故皆可以互求】
今有绢一疋欲作帐幅先折成六幅比旧帐长六寸改折作七幅却又短四寸其绢并旧帐幅各长若干【折作六幅以较长即六之一七幅即七之一】
法如前以【六七】幅相乗得四十二分为总母 以【六七】互乗其【之一之一】得【之七分之六分】为所用之分而列之【以绢四十二之七则长于帐六寸 以绢四十二之六则短于帐四寸】为较数
法一 实一尺即为绢之一分 以分母四十二乗之得绢长四丈二尺 以绢之七分计七尺减负六寸余六尺四寸为旧帐之长
计开
旧帐幅六尺四寸
绢长四丈二尺
均作六幅得七尺 比帐长六寸
均作七幅得六尺 比帐短四寸
论曰此与井不知深皆是以一物之细分与一整物较皆零整杂用之法也
又以上三条盈朒章旧有求法然皆因所较之井深与旧帐幅皆为一数而不变故可用盈朒之法若亦有分数不同则非盈朒所能御此方程之用能包盈朒诸法而诸法不能御方程
今有台不知髙从上以绳缒而度之及台三之二而余六尺双折其绳度之及台之半而不足三尺问台之髙及绳之长若何
法以台【三二】之【二一】用母相乗为母之法通台为六分 又用母互乗子为子之法变台三之二为六之四台之半为六之三 又以双折通绳为二 皆以化整为零而列之
余绳二分为法 并三十尺为实 因二为分母与法同省除与乗径以实三十尺为绳长 减负六尺余二十四尺以台之四分除之母六乗之得三十六尺为台髙
计开
台髙三十六尺
绳长三十尺
台三之二髙二十四尺 以绳度之余六尺
台之半髙一十八尺 以半绳一十五尺比之短三尺
今有井不知深以乙绳汲之余绳二尺以庚绳汲之亦余绳四尺双折庚绳三折乙绳以相续而汲之适足问井深及二绳各长若何
法以乙绳通为三 庚绳通为二
以三色列之 井整数乙庚用分
以隔行之同名仍为较数列之 余较皆与庚同名
余庚一分为法 即以实一丈命为庚二之一 倍之得庚绳二丈 减负二尺得乙绳一丈八尺【用减余之右行葢乙正三即全数也】
又减负二尺得井深一丈六尺【用原列之右行亦以乙负三即全数故】计开
井深一丈六尺
乙绳一丈八尺 比井多二尺
庚绳二丈 比井多四尺
三折乙绳六尺加双折庚绳一丈共一丈六尺即同井深
论曰此二条与前井深绢帐同理然即非盈朒所能御又按田之横直亦可以绳折比量水面亦然
今有直田欲截一段之积只云截长六歩不足积七步截长八步又多积九步问所截之积及原濶
法以较数列之【其原濶即截长每一步之积】
上 中 下
长二步除积十六步得原濶八步 以截长六步乗濶得四十八步加不足七步得截积五十五步
论曰此盈朒中方田也然无闗于方田之实用故入盈朒然不知宜入方程也
试更作问
今有方田欲截横头之积改为直田但云截濶五步则不足十二步截濶九步则如所截之积一有半问所截直田积并原田之方
如法列位
濶一歩半为法 积十八歩为实 法除实得原方一十二歩 以濶五歩乗方得六十歩加不足十二歩得截直田七十二歩
计开
原方田方十二歩 积一百四十四歩
截直田七十二歩 宜截濶六歩
若此条则盈朒不能御
今有米换布七疋多四斗换九疋适足问原米若干及布价
法列位
上 中 下
布二疋为法 四斗为实 法除实得布价每疋二斗 以九疋适足乗布价得原米一石八斗
论曰此盈朒中粟布法也
试更设问
今有谷换绢十疋余三石以谷之半换绢六疋不足五斗问原谷若干及绢价
法列位
法一免除 得绢每疋价二石 以十疋乗价加余三石得原糓二十三石
若此条则非盈朒所能御
论曰直田截积及米换布盈朒本法也愚所设方田截积及糓换绢非盈朒本法也乃带分盈朒之变例也【如旧法芝蔴粜银是其例也】虽盈胸亦有求法颇多转折非其质矣不如用方程之省约
今有芝蔴不知总但云取麻八分之三粜银十两不足二石取麻三分之一粜银八两适足问原麻总数及每银一两之麻
法先以麻【八 之三三 之一】用母相乗得二十四为母母互乗子得【之九之八】为所用之分而列之 依省算左加九之一而径减
法一两省除即以麻二石命为银每两之麻 以银八两麻八分适足省乗除径以二石为麻之一分以二十四分乗得原麻四十八石
计开
原麻四十八石 银毎两麻二石
其八之三计一十八石 银十两该二十石 故不足二石
其三之一计一十六石 银八两恰该一十六石 故适足
若问麻每石之银则以二石为法转除一两得每石价五钱
按此条宜入方程旧列带分盈胸之末
问者若云有银买麻以麻八之三与之则余二石以麻三之一与之适足问原麻及银所买
依法求得二石为麻之一分 以总母廿四分乗之得原麻四十八石 以九分乗二石减负二石得银所买麻十六石
论曰此所设问则盈朒带分本法也然不能知每价以方程法求之亦同 观此益见前条之宜入方程也
今有黄连木香不知数但云取连三之一换木香七之二则连多二斤取连四之三换木香五之四则连少一斤若于五之四内减去木香三斤则连多一斤
法先以通分齐其分
乃列位
如法乗减 余木香二十二分为法 异并黄连二十二斤为实 法除实得每木香一分【即三十五分之一】换黄连一斤 以木香十分换黄连十斤异加正二斤共十二斤以黄连正四分除之得黄连每三斤为一分 以分母十二乗之得总黄连三十六斤
另并黄连多一斤少一斤共二斤为法除减木香三斤得每黄连一斤换木香一斤半【原少连一斤减木香三斤而转多连一斤故知其数】
此连所换之木香一斤半即其三十五分之一分也以三十五分乗之得木香五十二斤半
计开
黄连三十六斤
木香五十二斤半
每黄连一斤换木香一斤半
三分三十六斤而取其一得一十二斤为黄连三之一七分五十二斤半而取其二得十五斤为木香七之二该换连十斤今连有十二斤是连多二斤也
四分三十六斤而取其三得二十七斤为黄连四之三五分五十二斤半而取其四得四十二斤为木香五之四该换连二十八斤今连只二十七斤是连少一斤也
若于木香五之四减三斤余三十九斤该换连二十六斤今连有二十七斤是连多一斤也
论曰凡较数方程有若干物共几色又有其所较之价银若钱之类今所用较数即用其物之斤两而无银若钱微有不同乃古者贸迁有无交易之术也专用银若钱以权物价后世事耳
问绫每尺多罗价三十六文今买绫六尺罗八尺其共价绫比罗少三十六文
畣曰绫每尺一百六十二文 罗每尺一百二十六文
罗二尺除二百五十六尺得罗价每尺一百二十六文 加多三十六文得绫价每尺一百六十二文
问银二千九百二十八两买绫一百五十疋罗三百疋绢四百五十疋只云绫每疋比罗多四钱七分罗每疋多绢一两三钱五分 畣曰绫每疋四两三钱二分 罗每疋三两八钱五分 绢每疋二两半
绢九百疋为法除实二千二百五十两得绢价二两五钱 加多一两三钱半得罗价三两八钱半 又加多四钱七分得绫价四两三钱二分
今有兄弟三人不知年小弟谓长兄曰我年比汝四之三次兄比汝六之五比我多八歳
法以带分别之 皆变零从整
季弟二 除一百四十四歳得年七十二歳 加八歳得仲兄年八十 六因仲年五除之得伯年九十六歳
计开
伯九十六歳 仲八十歳【为伯年六之五】 季七十二歳【为伯年四之三】今有四人分钱但云乙得甲六之五丙得甲四之三丁得甲二十四之十七其丁与丙差四文
甲正五 乙负六 空 空 适足【此行不用乙无对故也】
丁四除二百七十二得丁钱六十八文
加四文得丙钱七十二文
四乗丙钱三除之得甲钱九十六文
五乗甲钱六除之得乙钱八十文
计开
甲九十六文
乙八十文
丙七十二文
丁六十八文
甲六之一得一十六以五因得八十文为六之五乙数也甲四之一得二十四以三因得七十二为四之三丙数也甲二十四之一得四以一十七因得六十八为二十四之一十七丁数也
论曰此虽四色实三色也故径以三色取之
今有七人逓差分钱但知首二人共七十七文次二人共六十五文不知各数亦不知余人数
法以逓差故知倍乙当甲丙倍丙当乙丁而列之
重列减余与三行 减余变较
重列减余与四行
丁八为法除实二百四十八文得三十一文为丁数倍丁数与六十五文相减得逓差三文 以差逓
加得甲乙丙数以差逓减得戊己庚数 皆加减丁数得之
计开 甲四十文 乙三十七文 丙三十四文 丁三十一文戊二十八文 己二十五文 庚二十二文
今有银二百四十两以四人逓差分之只云甲多丁一十八两
如前法以倍乙当甲丙倍丙当乙丁 又依省算移甲于丁位
和较列位
重列两减余
又重列减余与末行
甲四除二百七十六两得甲数六十九两 甲数内减十八两得丁数五十一两 以甲数减二百四十两余一百七十一两丙三除之得丙数五十七两 并丙数甲数一百廿六两半之得乙数六十三两计开
甲六十九两 乙六十三两 丙五十七两 丁五十一两 逓差六两
今有米二百四十石五人逓差分之其甲乙二人与戊丁丙三人共数等
如前法列位 依省算倒甲位自下而上
重列减余与三行
又重列减余与四行
又重列减余与末行
甲十五除九百六十得甲数六十四石 倍甲数减一百廿石余得逓差八石 以差逓减各数得乙丙丁戊数
计开
细分之逓差八石
论曰凡差分章竹筒七节盛米之类皆可以此法求之兹不烦列
厯算全书卷四十五
<子部,天文算法类,推步之属,历算全书>
钦定四库全书
歴算全书卷四十六
宣城梅文鼎撰
句股阐微卷一
句股正义
首题
句股者横曰句纵曰股【亦可云勾纵股横】斜曰三线相聨而成句股形也
如图甲乙丙形甲乙为股乙丙为句甲丙为亦可云【甲乙为句乙丙为股】也 凡三角形或三角俱鋭或两鋭一钝或两鋭一
正【鋭钝正説具三角形算法中】句股形者两鋭一正形也其句股两线纵横相遇而成者为正角如乙防句两线及股两线相遇而成者为鋭角如甲丙两防 此三线者或三线俱不等其最大者必或两线等其等者必句股而无三线等何者以句股形一角正故也
一题
句股求
法曰句股各自乘并之开方得
如图甲乙句自乘得乙丁方乙丙股自乗得乙戊方两方相并即甲巳方开之得甲丙
论曰试移庚实形补辛虚形移丑实形补卯虚形移壬实形补子虚形移卯午实形补壬辰虚形所移者恰尽所补者恰足得乙丁与乙戊两方并恰与甲巳方等又论曰更以句与股相等之形观之夫句与股既等则句股各自乗固方也即句股互相乗亦方也【凡句股不等则句股互相乗必是矩形】如丁戊大方平分方边于方形中纵横作线中分四
小方形必等又句与股既等则上方边为句股各自乗两方之对角线亦为句股互相乗两方之对角线如于四小方形中作四对角线相聨而成一中方形也此中方形者割小方形四之半即涵小方形二之全就此图观之尤为明显
又法曰句与股相乗倍之另以句股差自乗并入倍数开方得
论曰甲乙股乙丙句相乗得乙丁矩形中分为庚戊两形夫庚形即辛形也倍之者再加癸卯两形也乙丙为句丙巳
为股乙巳为句股差自乗得乙子方并入倍数共成甲壬方为甲丙上方也
又法曰句自乗倍股依长濶相差法求之得股差加股为
论曰甲乙丙句股形甲丙也丁已亦也丁戊上方也乙丙股也乙壬亦股也乙子股上方也余乙戊子磬折形即句自乗之数也而已壬矩与乙丑矩等即丙戊矩亦
句自乗之数也此丙戊矩形中乙丙为股加乙壬为倍股曰长濶相差者丙午为长午戊为濶与壬午等即壬丙倍股为长濶之差也依法求之得壬午为股差
二题
句求股
法曰自乗内减句自乗余开方得股
论曰一题句股求苐一法句股各自乗并之即自乗数则自乗数中有句股各自乗之数也今于自乗数中减去句自乗所存者即股自乗数矣就一题之图观之自见
又法曰句相并得数相减得数两数相乗得数开方得股
如图甲乙丙句股形乙丙句甲乙股甲丙与乙丙相并即乙丁线相减即乙巳线【乙巳与乙子等】两线【乙丁乙子】相乗得子丁矩即
甲乙股上方
论曰己午方者已丙线上方即甲丙上方也内减子午形为乙丙句上方所存卯巳未磬折形即甲乙股上方矣而巳未矩又与丁卯矩等则丁子矩形即卯巳未磬折形矣亦即甲乙股上方矣
又法曰句自乗倍依长濶相和法求之得股差用减得股
论曰甲乙丙句股形甲丙也丁己亦也丁戊上方也乙丙股也乙壬亦股也乙子股上方也余乙戊子磬折形
即甲乙句自乗之数也而己壬矩与乙丑矩等即丙戊矩亦甲乙句自乗之数也此丙戊矩形中乙午为乙丙并午戊为倍曰长濶相和者丙午为长午戊为濶即丙午午戊并为长濶相和也依法求之得壬午为股差
三题
股求句
法同二题句求股
附长濶相和法
如图丁乙矩形积九百七十二尺丁甲为长乙甲为濶两边之和共六十三尺求甲丁甲乙二边各若干 法以和数
自乗得三千九百六十九尺次以积四倍之得三千八百八十八尺与和自乗相减存八十一尺开方得九尺【即丁甲乙甲二边之较数】以与和【六十三尺】相并折半得三十六尺为甲丁长边又与和相减折半得二十七尺为甲乙矩边长濶相差法【图同上】
丁乙矩形积九百七十二尺甲乙为濶戊乙为长丙戊九尺【乙丙即甲乙】为长濶相差数甲乙戊乙二边各若干法以较数【九尺】自乗得八十一尺次以积四倍之得三千八百八十八尺与较自乗相并得三千九百六十九尺开方得六十三尺【即戊乙甲乙二边之和数】以与较九尺相并折半得三十六尺为戊乙长边又与较【九尺】相减折半得二十七尺为甲乙短边
解曰甲午矩形作乙丙对角线成甲乙丙句股形甲丙长句也甲乙濶股也丙丑长濶和也【甲丑即乙甲】自乗得丙
子大方四倍矩积也并大方内戊丁
庚辛四矩形之积【大方内所容四矩俱与元形等如丙
壬矩即甲午矩其八句股形亦俱等元形】相减存己壬小
方开方得巳未边即甲乙甲丙二边之较数也【卯亥即甲乙股卯壬即甲丙句则壬亥为两边较数即长濶相差也】既得较数与所有和数相加减得甲乙甲丙二边矣
若长濶相差法是先有巳未较数故以上法反用之求得丙丑和得丙丑亦得甲乙与甲丙矣
四题
与句股较求句股
法曰自乗倍之较自乗用减倍数余开方得句股和于是和加较半之得长股和减较半之得短句
论曰甲乙丙句股形甲乙句也乙丁句上方也乙丙股也丙戊股上方也两方并共为上方辛壬亦句上方
庚已亦股上方两方并亦共为上
方此即自乗倍之之数也而两句
方两股方并为丙己大方则中间重
叠庚戊方矣此何方乎曰戊子即句股较也庚戊方即较上方也减之而重叠者去矣所存者为句股和上方矣故开之得丙丑为句股和也
又法曰自乗内减较自乗余半之以较为长濶相差法求之得短句加较得长股
论曰甲乙丙句股形甲丙也甲丁上方也巳子较也己丑较上方也两方相减余壬辛午未四形半之余午未二
形而午形又即戊形则是余未戊二形也此未戊二形者句股矩内形也故以巳子较用长濶相差法求之得子丙短句句加较得巳丙长股
五题
股与句较求句
法曰股自乗内减较自乗余半之以较为法除之得句句加较得
论曰甲乙丙句股形甲丙也甲丁上方也甲巳较也甲戊较上方也庚甲辛磬折形股自乗数也内减甲戊较上
方所余丙戊戊壬两形即为句与句较矩内形者二矣取其一如丙戊形以戊己较除之得己丙句【或不用折半倍较为法除之亦同】
又法曰股自乗以较为法除之得句和于是加较折半得减较折半得句
论曰甲乙丙句股形甲丙也甲丁上方也丙己亦句也丁戊句上方也所余庚甲辛 折形即股自乗数也而壬辛形与戊丙形等即壬己矩形亦股自乗数也以甲巳较除之得甲壬为句和也
又法曰股自乗较自乗相并倍较为法除之得减较得句
论曰甲乙丙句股形甲丙也甲丁上方也丁己为句上方即戊甲辛磬折形为股上方矣又己丙矩与庚壬矩等
即甲辛子磬折形亦股上方也加甲子较上方共得辛丑矩形其庚辛边即是倍较
六题
句与股较求股
法同五题
七题
与句股和求句股
法曰自乗倍之内减句股和自乗余开方得句股较于是较加和半之得长股较减和半之得短句
论曰甲乙丙句股形丙丁句股和也丁子和上方也丁午未子两句上方丙丑壬巳两股上方此即自乗倍之之数
也以较丁子和上方则其中重叠一壬丑方矣而此方之边即是句股较
又法曰句股和自乗内减自乗余半之以句股和用长濶相和法求之得句股
论曰丙丁为句股和丁巳为和上方午乙壬磬折形即上方两方相减余午丑壬磬折形分为午丑及丑壬两形形
之两边即句股
八题
股与句和求句
法曰句和自乗内减股自乗余半之以句和除之得句用减句和得【或不用折半倍句和除之亦同】
论曰甲乙丙句股形甲丁为句和甲巳为和上方又甲午为上方甲子为句上方即未午壬磬折形为股自乗而子丙矩与午辛矩等即戊辛矩形亦股自乗也于和方中减之所存者为未丁及戊己两矩形矣形之一边如甲丁即句和其一邉如甲未即句
又法曰股自乗得数以句和除之得句较于是用加句和半之得用减句和半之得句
论曰甲乙丙句股形甲丁句和也甲戊上方也戊己句上方也即午甲未磬折形为股自乗矣而卯巳矩与午丁
矩等即甲子矩形亦股自乗矣形之甲丁边即句和丁子边即句较
又法曰句和自乗股自乗相并倍和为法除之得减和得句
论曰甲丁为句和甲戊为和自乗
戊丑为句今试依庚戊矩作丁卯矩
即卯甲丑磬折形亦和自乗矣又甲
巳为上方未壬为句上方即未己壬磬折形为股自乗矣而壬子矩与子丑矩等即未丑矩亦股自乗矣然此犹在和自乗数中也今另加一股自乗如丑卯矩并
前卯甲丑磬折形共成一庚癸矩形
即为两自乗相并之数形之甲癸邉
即句和之倍形之甲庚边即是
也
九题
句与股和求股
法同八题
十题
句较股较求句股
法曰先以两较相减得即为句股较次以两较各自乗相并内减句股较自乗余开方得和较【和句股和也】于是加股较得句加句较得股以句较加句或以股较加股得
论曰甲乙丙句股形甲丙也甲巳即股也巳丙股较也甲壬即句也壬丙句较也壬己句股较也今试引甲壬句至丁令甲丁为句股和即丙丁为和较也次作甲戊为和上方午未为句较上方午子为股较上方【即庚辰方】两较上方相并共为午未辰磬折形内减
未子句股较上方余辰午癸磬折形
即戊午和较上方何则试观丑午
已磬折形句上方也子戊形亦句上
方也今于丑午已磬折形中减丑申及辛巳两矩形即是于子戊形中减卯子亥磬折形也然则所余之辰午癸磬折形非即戊午方乎
又法曰两较相乗倍之开方亦得
和较以下同前法
论曰甲乙丙句股形试引甲丙至丁
得甲丁为句股和甲戊为和上方【甲未股未丁句】丁子己子句也丁辛己壬也子辛子壬句较也未子亥子股也未申亥卯也子申子卯股较也然则卯辛与申壬两矩形即是两较相乘倍之之数也此两矩形者即戊午和较上方【丙丁为和较】何则未申亥磬折形句实也子戊方形亦句实也今试于未午亥磬折形减辛丙庚亥两矩形【辛未及亥壬皆是和较】及子午方即是于戊子方中减癸子丑磬折形也然则卯辛与申壬两矩形非戊午方乎
十一题
句股较句较求句股【句短股长看此题】
法曰先以两较相减得即为股较次以两较各自乗相减余为实倍股较为法用长濶相差法求之得句句加句股较得股句加句较得
论曰甲乙丙句股形丙乙股丙戊句
丙巳戊乙句股较戊己句较乙
巳股较乙丁亦为句丙丁为句股
和丙庚为和上方辛壬为句股较上方辛子为句较上方两较上方相减余丑子午磬折形夫乙子卯磬折形句实也壬庚方亦句实也今于壬庚方中作未庚未申两矩形与己丑寅卯两矩形等即所余壬申形与丑
子午磬折形等矣于是依壬申形作
壬亥形此形壬酉为长壬癸为濶与
壬辰等即辰未未酉为股较之倍
为长濶之差
按此法句股较句较相减得股较即三较皆备矣十题第一法句较股较相减得句股较即三较亦皆备矣既皆备三较则法可互用特以就题立法则法固各有攸属耳
十二题
句股较股较求句股【股短句长看此题】
法同十一题
十三题
句和股和求句股
法曰两和各自乗相并两和相减即为句子部,天文算法类,推步之属,历算全书>